PYK2 selectively mediates signals for growth versus differentiation in response to stretch of spontaneously active vascular smooth muscle
نویسندگان
چکیده
Stretch of vascular smooth muscle stimulates growth and proliferation as well as contraction and expression of contractile/cytoskeletal proteins, all of which are also regulated by calcium-dependent signals. We studied the role of the calcium- and integrin-activated proline-rich tyrosine kinase 2 (PYK2) in stretch-induced responses of the rat portal vein loaded by a hanging weight ex vivo. PYK2 phosphorylation at Tyr-402 was increased both by a 10-min stretch and by organ culture with load over several days. Protein and DNA synthesis were reduced by the novel PYK2 inhibitor PF-4594755 (0.5-1 μmol/L), while still sensitive to stretch. In 3-day organ culture, PF-4594755 caused maintained myogenic spontaneous activity but did not affect contraction in response to high-K(+) (60 mmol/L) or to α1-adrenergic stimulation by cirazoline. Basal and stretch-induced PYK2 phosphorylation in culture were inhibited by PF-4594755, closely mimicking inhibition of non-voltage-dependent calcium influx by 2-APB (30 μmol/L). In contrast, the L-type calcium channel blocker, nifedipine (1 μmol/L) eliminated stretch-induced but not basal PYK2 phosphorylation. Stretch-induced Akt and ERK1/2 phosphorylation was eliminated by PF-4594755. PYK2 inhibition had no effect on mRNA expression of several smooth muscle markers, and stretch-sensitive SM22α synthesis was preserved. Culture of portal vein with the Ang II inhibitor losartan (1 μmol/L) eliminated stretch sensitivity of PYK2 and Akt phosphorylation, but did not affect mRNA expression of smooth muscle markers. The results suggest that PYK2 signaling functionally distinguishes effects of voltage- and non-voltage-dependent calcium influx. A small-molecule inhibitor of PYK2 reduces growth and DNA synthesis but does not affect contractile differentiation of vascular smooth muscle.
منابع مشابه
Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments.
The growth-promoting effect of mechanical stress on vascular smooth muscle cells (VSMCs) has been implicated in the progress of vascular disease in hypertension. Extracellular signal-regulated kinases (ERKs) have been implicated in cellular responses, such as vascular remodeling, induced by mechanical stretch. However, it remains to be determined how mechanical stretch activates ERKs. The cytos...
متن کاملDown-regulation by antisense oligonucleotides establishes a role for the proline-rich tyrosine kinase PYK2 in angiotensin ii-induced signaling in vascular smooth muscle.
Abnormal vascular smooth muscle cell (VSMC) growth plays a key role in the pathogenesis of hypertension and atherosclerosis. Angiotensin II (Ang II) elicits a hypertrophic growth response characterized by an increase in protein synthesis in the absence of DNA synthesis and cell proliferation. Intracellular signaling mechanisms linking angiotensin type I receptor activation to protein synthesis ...
متن کاملAltered PYK2 phosphorylation by ANG II in hypertensive vascular smooth muscle.
Vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit increased cell growth compared with normotensive Wistar-Kyoto rats (WKY). ANG II stimulates growth via G(q)-protein-coupled signaling that involves changes in cytosolic intracellular Ca(2+) concentration ([Ca(2+)](i)) and activation of protein kinase C (PKC) and mitogen-activated protein kinases. This study e...
متن کاملResponses of smooth muscles to quick stretch: relation of stretch to conduction.
BURNSTOCK, GEOFFREY AND C. L. PROSSER. Responses of smooth muscles to quick stretch; relation of stretch to conduction. Am. J. Physiol. rg8(5) : g21--93:s. I g6o.-Quick stretches applied to isolated strips of visceral muscles elicit contractions and electrical responses, similar stretches elicit no responses from blood vessels and nictitating membrane. Highly excitable muscles gave repetitive r...
متن کاملStretch-Sensitive Down-Regulation of the miR-144/451 Cluster in Vascular Smooth Muscle and Its Role in AMP-Activated Protein Kinase Signaling
Vascular smooth muscle cells are constantly exposed to mechanical force by the blood pressure, which is thought to regulate smooth muscle growth, differentiation and contractile function. We have previously shown that the expression of microRNAs (miRNAs), small non-coding RNAs, is essential for regulation of smooth muscle phenotype including stretch-dependent contractile differentiation. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014